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APPLICATION OF STATISTICAL FUNCTIONS FOR RAINFALL 

DISTRIBUTION MODELLING AND SPI CALCULATION IN 

MEDITERRANEAN WATERSHED 
 

SUMMARY 

Drought indices are one of the most widely used methods for drought 

monitoring because of their ease of application and interpretation. The most 

commonly used drought index method is the Standardized Precipitation Index 

(SPI) method, which uses precipitation as an input. The performance of the 

Standardized Precipitation Index (SPI) is affected by the choice of an incorrect 

probability distribution function, which can distort index values, exaggerating or 

minimizing drought severity. This study aims to test the suitability of the 

statistical distribution functions proposed by the Bootstrap model, which 

estimates the closest probability distribution for calculating the SPI at time scales 

(TS) of 3, 6, 9, and 12 months. Daily rainfall data collected at the Dar Chaoui 

meteorological station were used for the period 2000-2021. Distribution function 

parameters were estimated using the maximum likelihood (ML) method and the 

Kolmogorov-Smirnov method and then confirmed using the Bootstrap method. 

The results show several extremely dry picks, especially in the 9- and 12-month 

time scales. 

Keywords: Rainfall distribution modelling, SPI calculation, Drought 

indices, Mediterranean, Bootstrap model, Kolmogorov-Smirnov method 

 
INTRODUCTION 

Like other natural phenomena closely linked to climate change, drought is 

increasingly affecting all throughout the world, more than other forms of disasters 
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(Zarei et al. 2021) and is one of the most expensive natural disasters globally. It is 

often described as a slowly unfolding phenomenon (Sylla et al. 2016) due to its 

gradual onset as a natural hazard. Delayed identifications of natural hazards, 

which often take longer to manifest and have an impact, typically result in 

delayed or more expensive reactions compared to interventions made during the 

initial phase following timely identification (Sestras et al., 2023; Spalevic, 2011). 

Drought impacts vary across regions, depending on their unique climatic 

characteristics and socio-economic environments, as stated by Liu et al. (2012). 

In relation to climatology and meteorology, drought is characterized by a 

significantly prolonged and severe lack of water, which falls below normal levels, 

resulting in adverse consequences for plants, animals, and society (Quenum et al., 

2019). Higher temperatures, increased water evaporation, and decreased 

vegetation cover all contribute to exacerbating the phenomenon of drought, 

although occasional droughts have always been a part of Earth's natural 

phenomena (Ojha et al., 2021; Sabri et al., 2022). 

There is no single globally accepted definition of drought (Wilhite and 

Glantz, 1985), as drought can be analyzed and interpreted from different angles 

and different perceptions (Liu et al. 2018). This is typically defined based on the 

circumstances in each specific area.  

Drought monitoring requires a variety of approaches because of differences 

in local rainfall, seasonal cycles, and types of rainfall. This complexity in the 

accurate description of the phenomenon led researchers to define drought 

indexes, ranging from the simplest to the most complex. These indicators enable 

the characterization of droughts by their intensity, duration, spatial extent, 

probability of recurrence (Spinoni et al., 2014), and, as highlighted by Zhang and 

Li (2020), their detection at various stages of evolution, including location, time 

of occurrence, and termination. 

A variety of drought indicators is in use, including the Palmer Drought 

Index (PDSI: Palmer, 1965), the Standardized Precipitation and 

Evapotranspiration Index (SPEI: Vicente-Serrano et al., 2010), and the 

Standardized Precipitation Index (SPI: McKee et al., 1993). The selection of 

these indicators depends on the specific impact to be evaluated within the 

framework of monitoring and comprehending changes in vulnerability to the 

phenomena. The Standardized Precipitation Index (SPI) is endorsed by the World 

Meteorological Organization as a standard for meteorological drought 

characterization (Hayes et al., 2011) due to its distinct advantages. It is flexible 

enough to be applied across various timescales (Fotse et al., 2024). It is 

applicable to all climate regimes and exhibits good spatial consistency, enabling 

comparison across different areas subject to varying climatic conditions (Pieper et 

al., 2020). Due to these exceptional advantages, the index has been demonstrated 

to be effective in detecting various historical drought events in numerous regions 

worldwide (Ndayiragije et al., 2022). 

Promoters of the SPI have suggested using a gamma distribution to fit 

cumulative precipitation in the calculation of this index, but many studies have 
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shown the limitations of this distribution (Touma et al. 2015; Blain et al. 2018), 

and researchers have shown that the applicability of theoretical distributions to 

describe cumulative precipitation is inconsistent across different regions and 

climates (Raziei 2021). For this reason, in this study, we applied the Bootstrap 

model to find the closest distribution to the precipitation series, and then 

conducted tests to decide which the appropriate distribution is. We also applied 

extreme value theory to find the return period over the next 100 years. 

 

MATERIAL AND METHODS 

Study area. Morocco, officially known as the Kingdom of Morocco, is 

situated in the north-western part of Africa within the historically significant 

Maghreb region (Amraoui et al., 2023; Bouayad et al., 2023). The study area is 

the Tangier region (Figure 1), which is one of the twelve regions of Morocco and 

is located in its northernmost part (Ouallali et al., 2024; Badda et al., 2023). This 

part is known for its rich geological and environmental diversity.  

The region exhibits a diverse geological landscape, with coastal areas 

featuring distinctive formations influenced by maritime processes. Tangier and 

Tetouan boast unique geological formations shaped by coastal erosion and 

sedimentation. In contrast, the mountain ranges, exemplified by Chefchaouen, 

exhibit distinct geological features formed through tectonic activity and erosion 

processes over millennia. The environmental diversity of the region is primarily 

attributed to its varied climate. Ranging from humid Mediterranean to sub-humid, 

the climate of the northern region of Morocco is influenced by its geographical 

location and proximity to both the Mediterranean Sea and the Atlantic Ocean.  

Data used. Monthly precipitation data ranging from 2000 to 2021 were 

obtained from the database of the Loukkos Hydraulic Basin Agency (LHBA). 

They are from Dar Chaoui meteorological stations located in the Tangier region 

in northern Morocco. The geographical positions of this station and the 

topography of the domain are shown in Figure 1. 

 
Figure 1: Study area with the geographical location of the station. 
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Computation of the Standardized Precipitation Index (SPI). To 

calculate SPI values, suitable probability density functions are fitted to frequency 

distributions of rainfall data. These distributions are aggregated for all selected 

timescales (3, 6, 9 &12 months) and subsequently transformed into standardized 

normal distributions (Raziei, 2021). The maximum likelihood (ML) estimation 

method was employed to determine the optimal parameters of distribution 

functions for testing purposes. Subsequently, the Kolmogorov-Smirnov (K-S) test 

was conducted to select the most suitable distribution from the bootstrapped 

functions (Raziei, 2021). The distribution with the lowest K-S statistic was 

identified as the best-fitting distribution. Subsequently, this distribution was 

utilized to construct the Cumulative Distribution Function (CDF). The CDF was 

transformed into normalized random variables and subsequently converted into 

Standardized Precipitation Index (SPI) values. 

The duration of the Standardized Precipitation Index (SPI) varies 

depending on the specific type of drought under analysis and the intended 

applications (Gebremichael et al., 2022). Thus, the interpretation of the SPI 

indicates analyzing anomalies, which denote deviations from the average total 

rainfall observed within each specific period. High positive SPI values indicate 

excessively wet conditions, whereas high negative SPI values signify severe 

drought conditions. In the classification system proposed by McKee et al. (1993), 

various categories of drought are defined based on the SPI values, as illustrated in 

Table 1. 

 

Table 1: Drought classification by SPI scores  

 

SPI Value Sequence of drought 

SPI > 2 Extremely humid 

1.5 < SPI < 1.99 Very humid 

1 < SPI < 1.49 Moderately humid 

-0.99 < SPI < 0.99 Near normal 

-1 < SPI < -1.49 Moderately dry 

-1.5 < SPI < -1.99 Very dry 

SPI < -2 Extremely dry 

Source: McKee et al, 1993; Cancelliere et al. 2007 

 

The ML method, as introduced by Streit and Luginbuhl (1994), facilitates 

the estimation of parameters in a regression model, assuming knowledge of the 

true distribution law of these parameters. It involves maximizing the likelihood 

function, also known as the joint density function, with respect to the parameters 

for a given sample. The objective is to identify the parameter that has a high 

probability of reproducing the observed values of the sample, thereby closely 

matching the true values (Streit & Luginbuhl, 1994). 

In simpler terms, the ML method seeks to determine the most likely value 

of a parameter for a population, based on a given sample (Horvath, 1993). When 
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applied to a dataset, it identifies the distribution parameter value that maximizes 

the likelihood function (Meng et al., 2014). 

Random sample is X1,X2,X3,…,Xn from a distribution F(x;θ1,θ2,…,θp), 

where θ1,θ2,…,θp are parameters of the distribution. The maximum likelihood 

(ML) estimators, denoted as θ̂1, θ̂2, … . , θ̂𝑝, are obtained as the solutions to the 

system of p equations: 

 
∂L(θ1,θ2,….θp)

∂θr
= 0                                                                                          (1) 

For r = 1,2,…,p, where the likelihood function is defined as: 

L(θ1, θ2, … . θp) = ∏ 𝑓(𝑋i, θ1, θ2, … . θp)𝑛
𝑖                                                   (2) 

Maximizing the log of the likelihood function is often preferred as it 

simplifies the calculations. Both methods, maximizing the probability function 

and maximizing its logarithm, lead to the same maximum value because the 

logarithm is a monotonically increasing function. Therefore, we maximize the 

log-likelihood function: 

𝑙𝑛 L(θ1, θ2, … . θp) = ∏ 𝑙𝑛 𝑓(𝑋i, θ1, θ2, … . θp)𝑛
𝑖                                          (3) 

 

This simplifies the maximization process and still yields the same 

maximum likelihood estimators. 

the maximum likelihood (ML) method is widely regarded as an efficient 

estimator due to several favorable properties it exhibits. 

Firstly, it typically yields estimators with lower variance compared to other 

methods, making it desirable for statistical inference. This property contributes to 

the precision and reliability of the estimates produced. 

Moreover, the ML method tends to produce even more satisfactory results 

when applied to large datasets, particularly those with a sample size greater than 

100 (n > 100). With larger sample sizes, the estimates tend to converge more 

closely to the true population parameters, enhancing the accuracy of the 

estimation process. 

Furthermore, the ML estimator possesses several desirable properties of a 

good estimator. Firstly, it is consistent, meaning that it tends to converge to the 

true value of the parameter (θ) as the sample size increases. Additionally, the ML 

estimator is asymptotically unbiased, implying that the expected value of the 

estimator approaches the true parameter value as the sample size tends to infinity. 

Lastly, the ML estimator is asymptotically efficient, suggesting that it achieves 

the lowest possible variance among all consistent estimators, making it highly 

desirable for statistical inference (Horvath, 1993). These favorable properties 

contribute to the widespread use and popularity of the ML method in statistical 

analysis and modelling. 
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Bootstrap model application. The main advantage of the bootstrap 

resampling approach is that good estimates can be obtained regardless of the 

complexity of the data processing. In the context of density, the bootstrap method 

can be effectively used to estimate statistics such as skewness and kurtosis to 

explore density functions that closely represent the underlying reality of the data 

(Delignette-Muller and Dutang 2015). The following steps are typically taken to 

estimate skewness and kurtosis using Bootstrap: 

Resample: Randomly sampling observations with replacement from the 

original data set to create multiple bootstrap samples. 

Estimation: Compute skewness and kurtosis for each bootstrap sample. 

Aggregation: Calculate the average skewness and kurtosis over all 

bootstrap samples. 

By using bootstrapping in this way, obtained more reliable estimates of 

skewness and kurtosis help to better understand the shape and distribution of the 

data, leading to a more accurate density estimate that is closer to the real world 

scenario. 

A general description of the basic principle of bootstrap methods are as 

follows: Suppose we are interested in estimating some parameter δ, and suppose 

we have observations Y1...,Yn from a distribution F that depends on δ. 

Furthermore, we have a method for finding an estimate 𝛿 ̂of δ, say 𝛿 = T 

(Y1,...,Yn ). The estimator T can be as simple as computing the skewness or 

kurtosis of the observations. 

The main idea of bootstrapping is to replace the distribution F in the above 

study by the empirical distribution function �̂�.  

We will show that sampling from a distribution means sampling by 

replacement from Y1,..., Yn. A bootstrapped sample has the same size as the 

original sampled data. It consists of the original observations, some of which may 

appear more than once, while others may not be included. We then apply the 

estimate T to each of them and obtain bootstrapping estimates 𝛿 ̂1 ,..., 𝛿 ̂𝐵 of δ . 

To get an idea of the error and bias of T, or more generally of its sample 

distribution, we can then examine these bootstrap estimates. 

 

Statistical distributions used to fit data 

Gamma's law. Several studies have been carried out on the gamma law, 

and in particular (Choi and Wette, 1969) treat the gamma law in great detail. The 

X random variable follows a gamma distribution if its probit probability density 

functional (PDF) is: 

𝑓(𝑥) =
1

𝛽(𝛼)𝛤(𝛼)
𝑥(𝛼−1)exp (−

𝛼

𝛽
)                                                      (4) 

Proceed as follows to obtain the cumulative gamma function: 

𝐹(𝑥) = ∫ 𝑓(𝑥)
1

𝛽(𝛼)𝛤(𝛼)

𝑥

0 ∫ 𝑥(𝛼−1)exp (−
𝛼

𝛽
)

𝑥

0
                                    (5) 

With: 𝛼 > 0 is the parameter of shape 

𝛽 > 0 is the parameter of scale 
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𝛤 is the mathematical gamma function 

α and β are given by the ML method in the following way: 

α̂ = √1 +
4𝐴

3
  

β̂ =  
−𝑥

α̂
                                                                                              (6) 

A = ln(−𝑥) −
𝛴 ln(𝑥)

𝑛
   

Where n is the number of years of observation. Note that this function is 

undefined for x=0, and its modified cumulative function has the form: 

𝐻(𝑥) = 𝑞 + (1 − 𝑞)𝐹(𝑥)                                                                 (7) 

where q is the probability of zero precipitation at each station over the 

entire period under consideration. 

 

Lognormal’s law. If the logarithm of the random variable is normally 

distributed, then a positive random variable x follows a lognormal distribution. 

The PDF of a lognormal distribution is defined as (Mage and Ott 1984): 

𝑓(𝑥) =
1

𝑥𝜎√2𝜋
𝑒𝑥𝑝 [

− (ln 𝑥−µ)2

2𝜎2 ]                                                         (8) 

where x > 0, σ > 0 and -∞ < µ < +∞ 

µ is a scale parameter, stretching or shrinking a distribution, and σ2 is a 

shape parameter, affecting distribution shape. These can be estimated using the 

ML estimator method in the following way: 

 

µ̂ =
1

𝑛
∑ ln 𝑥𝑖

𝑛
𝑖=1                                                                                  (9) 

�̂�2 =
1

𝑛
(∑ ln 𝑥𝑖 − µ̂)𝑛

𝑖=1
2
   

 

Weibull’s law. According to Panahi and Asadi (2011), the PDF of a 

Weibull distribution for a random positive variable X is: 

𝑓(𝑥, 𝛼, 𝛽) = 𝛼𝛽𝑥𝛼−1exp (−𝛽𝑥𝛼)                                                    (10) 

Wu (2002) provides a detailed explanation of the shape and scale 

parameters derived by the ML approach mentioned above. Since there are no 

closed-form formulations for the parameters α and β, they are estimated by 

maximizing the equation's log-likelihood expression (Panahi and Asadi, 2011). 

Its complementary cumulative distribution function is a stretched exponential 

function, and its explicit form is provided by: 

𝐹(𝑥) = 1 − exp (−(
𝑥

𝛼
)𝛽                                                                   (11) 

 

Gumbel’s law. A random variable X is distributed according to a Gumbel 

law (Cooray 2010), also called a double exponential law or extreme value law, if 

its PDF is given by: 

𝑓(𝑥) =
1

𝛽
𝑒𝑥𝑝 [−exp (−

𝑥−µ

𝛽
)] exp (−

𝑥−µ

𝛽
)                                      (12) 

With: µ > 0 is the position or mode parameter 
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𝛽 > 0 is the non-zero scale parameter, positive or negative 

-∞ < x < +∞ 

The ML method is used to estimate the terms µ and β. Their cumulative 

distribution function is given by: 

𝐹(𝑥) = 𝑒𝑥𝑝 [−exp (−
𝑥−µ

𝛽
)]                                                                (13) 

The maximum and minimum of a number of samples of normally 

distributed data is represented by Gumbel's law. 

 

Exponential’s law. The distribution of a random variable X is exponential 

if its PDF is defined as follows: 

𝑓(𝑥) =
1

𝛽

𝑒𝑥𝑝[−(𝑥−µ)]

𝛽
                                                                            (14) 

Rahman and Pearson (2001) define x ≥ µ and β > 0 as the location and 

scale parameters, respectively. Commonly referred to as the constant failure rate, 

the scaling parameter is λ =
1

𝛽
. In this way, the PDF of the exponential rule can 

be represented as follows: 

𝑓(𝑥) = λexp[−(𝑥 − µ)]λ                                                                   (15) 

It is designed to distribute the following: 

𝐹(𝑥) = 1 − 𝑒𝑥𝑝(−(𝑥 − µ)) λ                                                            (16) 

A random and independent sample is used to estimate the parameters µ and 

λ. By taking the derivative of the logarithm of the likelihood function of the 

exponential law, the ML estimator is determined: 

λ̂ =
1

�̅�
 

Where �̅� =
1

𝑛
∑ 𝑥𝑖

𝑛
𝑖=1  

 

Logistic’s law. If the PDF of a random variable X is given by (Pérez-

Sánchez and Senent-Aparicio 2018), then the random variable X follows a 

logistic law: 

𝑓(𝑥) =
𝑒𝑥𝑝

−(𝑥−𝛼)

𝛽

(𝛼)(1+𝑒𝑥𝑝
−(𝑥−𝛼)

𝛽
)2

                                                                     (17) 

-∞ < x < +∞, where α is the shape parameter and β is the scale parameter 

that is nonzero and positive. Their cumulative distribution function is: 

𝐹(𝑥) =
1

1+𝑒𝑥𝑝
−(𝑥−𝛼)

𝛽

                                                                             (18) 

The ML approach predicted the parameters α and β, which were used as 

the initial values of the program (α = 0 and β = 1). 

 

Burr’s law. Burr's XII distribution is a continuous and widely known 

distribution, as it incorporates the characteristics of several well-known 

distributions, such as the Weibull and Gamma distributions (Pérez-Sánchez and 
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Senent-Aparicio 2018). A random variable X is said to follow a distribution of 

type XII of the Burr or Burr type if its PDF is: 

𝑓(𝑥) =
𝛼𝛾

λ
(

𝑥

λ
)𝛼−1(1 + (

𝑥

λ
)𝛼)−𝛾−1                                                (19) 

Where: 

𝑥 > 0  

λ > 0 the scale parameter 

𝛼 > 0 the shape parameter 

𝛾 > 0 the shape parameter 

ML is most often used to estimate these parameters (Ghitany and Al-

Awadhi 2002). Their cumulative distribution function has the form: 

𝐹(𝑥) = 1 − (1 + (
𝑥

λ
)𝛼)−𝛾                                                             (20) 

 

The K-S fit test. This test is inspired by the (Kolmogorov 1933) 

distribution fitting statistic, as mentioned by (Stephens 1970). It is a measure of 

the extent that the data Xi (i=1,...n) follow a specific distributional rule. K-S-Test 

is a nonparametric test for comparing a sample to a reference probability 

distribution or for comparing two samples (Mitchell, 1971). It can be used for 

comparing a sample with a reference probability distribution or for comparing 

two samples (Mitchell, 1971). This difference is negligible, and the distribution 

of observations fits a pre-defined distribution according to the H0 hypothesis. The 

better the law fits the data, the weaker the K-S test for a given data set and 

distribution. Thus, a law must have a significantly lower K-S test than the others 

for it to be the best. The K-S test is a measure of the difference between the 

empirical distribution function of the sample and the cumulative distribution 

function of the reference distribution, or between the empirical distribution 

functions of two samples. The statistic (K-S) was defined by Stephens (1970) as 

follows: 

𝐷𝑛 = 𝑚𝑎𝑥𝑥‖𝐹𝑛(𝑥) − 𝐹(𝑥)‖                                                          (21) 

with -∞ < x < +∞, and by means of the Glivenko-Cantelli theorem 

(Dehardt 1971): 

𝐹𝑛(𝑥) =
1

𝑛
∑ 𝐼(−∞,x)(𝑥𝑖)𝑛

𝑖=1                                                              (22) 

With: 𝑛 appears the observation parameter in population x. 

𝐹𝑛(𝑥) represents the empirical cumulative distribution function. 

𝐼(−∞,x) is the indicator function for the event x. 

𝐹(𝑥) shows the theoretical cumulative distribution function. 

Return Period Based on Extreme Value Theory. Extreme events play a 

crucial role in various natural processes. Knowledge of extreme events is required 

for the design and management of human activities in the environment. 

Therefore, to be able to make conclusions about extreme values of large 

magnitude associated with low probabilities of occurrence, the statistical 

modelling of extreme values is carried out. In order to refer to this type of value, 

the concept of a return period (T) has been introduced. The recurrence interval T 
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(Meylan et al. 2008) is the average length of time that, from a statistical point of 

view, an event of the same intensity occurs again. In hydrologic terms, the 

average time interval between two events of a certain intensity. There is a simple 

relationship between the probability of an event occurring and its return period. 

Let X be the random variable associated with the precipitation series and 

"p" the probability of an extreme occurrence, p = P (X >=xT). The average time 

between two successive occurrences of the event (X =xT) is the return period T 

of the event. In the case of a yearly period, the return period T is related to this 

probability as p=1/T.  Thus, the probability that an extreme event will not occur 

given a year is given by: 

𝑃 (X < 𝑥𝑇) = 1 − 𝑝 = 1 −
1

T
                                                          (23) 

The probability of the design rain not occurring for N years, the duration of 

our study, is: 

𝑃 (X < 𝑥𝑇) = (1 −
1

T
)

N
                                                                  (24) 

We define the return level zp as the distribution of this model given by the 

following equations: 

𝐺𝐸𝑉(𝑧𝑝) = 1 − 𝑝                                                                             (25) 

This will result in: 

1 − 𝑝 = {
𝑒𝑥𝑝 [−(1 + ɛ

𝑧𝑝−µ

𝜎
)

−1

ɛ ]                𝑠𝑖 ɛ ≠ 0

𝑒𝑥𝑝 [−exp (−
𝑧𝑝−µ

𝜎
)]                       𝑠𝑖 ɛ = 0

                       (26) 

We can then derive the expression for zp as follows: 

𝑧𝑝 = {
µ −

𝜎

ɛ
[1 − {− ln(1 − 𝑝)}−ɛ]         𝑠𝑖 ɛ ≠ 0

µ − 𝜎𝑙𝑛[− ln(1 − 𝑝)]                      𝑠𝑖 ɛ = 0
                            (27) 

Our choice of p is small (unlikely value). By substituting the maximum 

likelihood estimators for the three model parameters in the formula, we obtain the 

maximum likelihood estimate of zp (likelihood invariance). 

 

RESULTS 

Determining Appropriate Distribution Functions 

Bootstarp method. The unbiased estimation of skewness and kurtosis 

values is necessary for better decision making when a given observed sample is 

assumed to estimate the population distribution. In particular, these characteristics 

can be very useful to guide the choice of the most appropriate parametric 

distributions, since "a non-zero skewness reveals a lack of symmetry in the 

empirical distribution, while the kurtosis value quantifies the weight of the tails 

compared to the normal distribution, for which the kurtosis is equal to 3". 

As a first step, we applied a bootstrap method to consider the uncertainty of 

the estimated values of kurtosis and skewness from the observed data. 

Bootstrapping is an efficient resampling technique used to estimate the variance 

of statistics, especially when the underlying data distribution is unknown or 

complex (for example, (DiCiccio and Efron 1996).  The idea is to use the 
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observed sample to estimate the population distribution by computing the 

descriptive parameters of an empirical distribution, and to provide a skewness-

kurtosis plot that has the square of the skewness on the x-axis and the kurtosis on 

the y-axis. The plot includes a point corresponding to the empirical distribution of 

the collected sample. It also includes bootstrapped values derived from random 

resampling.  

To aid in the selection of distributions to fit the data, comparisons are made 

with values for various common distributions. For certain distributions such as 

normal, uniform, and logistic, where there is only one possible value for 

skewness (indicated by points with zero skewness) and kurtosis, these 

distributions are represented by distinct points on the graph. Other distributions 

exhibit ranges of possible values, depicted by lines (as seen with gamma and 

lognormal distributions) or larger areas (as observed with beta distributions). The 

Weibull distribution is often considered a close approximation of gamma and 

lognormal distributions. 

In this paper, the "descdist" function of R, with boot = 1000, is employed 

to generate Cullen and Frey plots for the analyzed approaches, as depicted in 

Figure 2. Both observed and bootstrapped values exhibit notable deviations from 

the points representing symmetric distributions across all approaches. 

Consequently, to narrow our focus towards other potential distributions, we 

exclude symmetric distributions from consideration for fitting. Specifically, we 

focus on beta, log-normal, gamma, Weibull, and Burr distributions as candidate 

models. 

 
Figure 2: Determination of suitable distribution functions with Bootstrap model 
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Theoretical comparison. As we mentioned in the methodology section, 

the best fit law must have a low K-S test value, a low Akaike information 

criterion value, and a low Bayesian information criterion value. Figure 3 shows 

that the law with the lowest values of these goodness of fit tests is the Weibull 

law with K-S=0.03, AIC=1786.38 and BIC=1793.10; it is followed by Burr's law 

with K-S=0.04, AIC=1789.06 and BIC=1799.14; and Gumbel’s law with K-

S=0.06, AIC=1817.56 and BIC=1824.28. 
 

 
Figure 3: Theoretical determination of suitable distribution functions 
 

Graphical comparison. Figure 4 displays a graphical comparison of all 

cumulative distribution functions for empirical rainfall alongside each of the test 

distribution functions. The results are presented for the study station and for a 12-

month time series (TS). The findings corroborate those obtained from the 

theoretical comparison, indicating that the Weibull distribution provides the best 

fit, followed by the Burr and Gumbel distributions. The test comparing empirical 

and theoretical cumulative distribution functions (CDFs) reveals that the 

distributions best fitting the precipitation series and exhibiting nearly perfect 

alignment are Weibull's, Burr's, and Gumbel's distribution, respectively. 

 
Figure 4: Graphical determination of suitable distribution functions 
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Weibull distribution fitting. To test hypotheses, we begin by stating a 

null hypothesis and an alternative hypothesis. For example, if we want to 

compare rates between two groups, we might say that the null hypothesizes that 

the rates will be the same, and the alternative hypothesizes that the rates will 

vary.  

To test the truth of the null hypothesis, we then collect data. Specifically, 

the data allow us to calculate the p-value, which is defined as "the probability, 

under a particular statistical model, that a statistical summary of the data would 

be equal to or more extreme than its observed value" (Wasserstein and Lazar 

2016), and is in effect a reflection of the degree of consistency of the data with 

the null hypothesis.  

Usually, we reject the null hypothesis and accept the alternative hypothesis 

if the p-value is less than the 0.05 significance level. In our case, the P-value is 

equal to 0.89 (Figure 5), which is a very large value at 0.05. Therefore, the H0 

hypothesis is accepted. 

Also, the results obtained by fitting the Weibull distribution according to 

the equations cited in the Methodology section show that the value of shape = 

1.232 and the value of scale = 26.586 (Figure 5). 

From Figure 6, it is clear that the empirical and theoretical densities are 

very close to each other, and also that the empirical and theoretical probabilities, 

as well as the empirical and theoretical quantiles of the observations, are well 

aligned to the right. Thus, we can confirm that the Weibull distribution fits our 

data very well. 

 

 
Figure 5: Summary results of Weibull’s fit 
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Figure 6: Empirical and theoretical CDFs of Weibull 

 

Confirmation of Weibull Distribution Function with Bootstrap method 

The results obtained by bootstrapping shape and scale values based on 

simulations of observed data without the intervention of distribution laws confirm 

the results obtained using Weibull distribution with shape value near 1.25 and 

scale value around 26.5 (Figure 7). Furthermore, all observations are within 95% 

confidence limits, which support our choice of distribution (Figure 8). 
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Figure 7: Shape and Scale of Weibull Distribution 

 

 
Figure 8: Weibull distribution with 95% confidence interval 
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Analysis of computed SPIs with adequate distributions. SPI time series 

were computed using the distribution most suitable for the station, and the results 

are illustrated in Figures 9 and 10. The 3-month SPI (Figure 9) exhibits a high 

frequency of drought episodes, ranging from mild to extreme. In the case of the 

6-month SPI (Figure 9), there are 6 episodes of extreme drought observed. 

Analysis of the 9-month SPI (Figure 10) reveals 5 episodes of very severe 

drought and 1 episode of extreme drought recorded at the station. Furthermore, 

for the 12-month SPI index (Figure 10), the station experienced 3 episodes of 

very severe drought and 1 episode of extreme drought. Notably, the dramatic 

drought episodes in the years 2000 and 2021 are evident across all-time series, 

with an observable increase in drought duration, particularly from the 2010s 

onwards 

 
Figure 9: (A) SPIs at 3-month TS; (B) SPIs at 6-month TS 

 
Figure 10: (A) SPIs at 9-month TS; (B) SPIs at 12-month TS 
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Return Period with Gumbell distribution. The station's Q-Q plot was 

created, and the fit of the distribution to the observed data was determined using 

the RMSE. The main aim of fitting the probability distribution here is to represent 

low-probability extreme events as accurately as possible. A Q-Q plot is used to 

study the level of fit of the extreme right tail (Alam et al. 2018). Any perfect 

match with the observed data points would fall on the [1:1] line. In Figure 11(A 

and B), the GEV distribution matches the data well, with the right tail close to the 

[1:1] line. The densities of the empirical and modelled data are very close to each 

other (figure 11(C)). Moreover, all observed values are within the 95% 

confidence interval (figure 11(B)). 

 

 
Figure 11: (A) Empirical and Model Quantiles; (B) Quantiles from model 

simulated data with 95% confidence interval; (C) Empirical and Modelled 

density; (D) Return Period. 
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DISCUSSION 

Gamma is selected by default as the best fit without comparison with other 

distributions in most studies of SPI. In this study, we found that new functions 

(Weibull) are able to better fit the data in the station when a larger number of 

distribution functions are used. Therefore, depending on the geographical location 

of the station and the TS under consideration, the choice of the appropriate 

distribution function is important. These results are corroborated by our present 

study, which shows different distribution functions. The findings confirm those of 

(Fotse et al. 2024), who suggested that it is not possible to recommend a single, 

optimal distribution because the ratio of skewness and the coefficient of variation 

of the data rainfall could be the indicator for the choice of the most appropriate 

distribution for a particular region. Furthermore, (Angelidis et al. 2012) and 

(Stagge et al. 2015) considered that the appropriate probability distribution was 

associated with the TS of the rainfall data to be fit. 

In a comparison of seven probability distributions, (Stagge et al. 2015) 

concluded that the gamma distribution produces the best fit for precipitation with 

long accumulations (> 6 months TS), while the Weibull distribution consistently 

performs the best for precipitation with short accumulations (1-3 months TS). In 

this study, weibull distribution gives best fit for rainfall with short time 

accumulation (3months TS), and longer time accumulation (>6months TS). 

Significant variations in average precipitation patterns have a pronounced 

impact on the frequency and severity of droughts in the context of climate change 

particularly that attributed to global warming. This study shows that both 

intensity and duration of droughts show an increasing trend over different time 

scales. This observed phenomenon is likely due to reduced precipitation levels, a 

consequence attributed to climate change, as posited by scientific works such as 

those by (Beroho et al. 2020) and (Boulahfa et al. 2023). Specifically, 

temperature emerges as a key determinant of water availability dynamics, mainly 

by regulating evapotranspiration rates. 

 

CONCLUSION 

This research contributes to the improvement of mathematical methods for 

drought modelling, which is particularly relevant given its hazardous nature and 

the challenges associated with adaptation, especially in developing countries such 

as Morocco. In this context, the Standardized Precipitation Index (SPI) serves as 

a central drought indicator, prompting this study to investigate the efficacy of 

using alternative probability distribution functions to fit and characterize 

observed precipitation data - a crucial initial stage in the SPI calculation. 

In this study, eight different statistical distribution functions were 

examined to determine the optimal fit for data from the Tangier region station, 

spanning the 2000-2021-time domain, at different time scales (TS) of 3, 6, 9, and 

12 months. The Maximum Likelihood (ML) method was used to estimate the 

parameters of these distribution functions. The Kolmogorov-Smirnov (K-S) 

statistic served as a discriminating metric to identify the distribution functions 
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that best fit the observed station data, which were subsequently used in the SPI 

calculation. The results of this analysis were used to identify patterns of drought 

occurrence and to quantify discrepancies resulting from the use of mismatched 

distribution functions. The choice of an optimal distribution function for 

precipitation data depends on both the geographic location of the station and the 

temporal scope of the analysis, as defined by the number of months in the time 

series (TS). In particular, the Weibull probability distribution consistently 

demonstrated superior performance across all TS durations. 

This investigation underscores the importance of conducting a careful 

preliminary assessment aimed at identifying the most appropriate distribution 

functions for data fitting, and then using them in the SPI calculation. Such an 

approach is critical to reducing error and improving the accuracy of results in 

drought modelling and assessment. 
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